博客
关于我
Python 绘制直方图,numpy数据类型绘制直方图
阅读量:520 次
发布时间:2019-03-07

本文共 1226 字,大约阅读时间需要 4 分钟。

Python 绘制直方图:基于数据分析的可视化方法

在 Python 中绘制直方图,可以通过使用 matplotlib 库来实现数据的可视化展示。本文将介绍如何利用 Python 代码生成直方图,并对数据进行分析。

首先,我们需要导入所需的库。最常用的方法是使用 pip 命令安装 matplotlib,然后在代码中调用它。例如:

import matplotlib.pyplot as plt

接下来,我们需要准备数据。在这里,假设我们已经有一个包含数据的变量 h,它表示每个客户在某一特定属性上的使用次数。为了生成直方图,我们可以使用 plt.hist() 函数。以下是一个简单的示例:

plt.hist(h)
plt.show()

这段代码将会生成一个直方图图表,并自动打开它。为了更好地定制直方图,可以添加一些参数。例如,如果我们想将数据分成 300 个 bins,可以这样做:

num_bins = 300
plt.hist(h, num_bins, facecolor='blue', alpha=0.5)
plt.show()

此外,我们可以对图表进行更详细的配置。例如,如果想要添加标题和轴标签,可以使用 plt.title()plt.xlabel() 等函数。

plt.hist(h, num_bins, facecolor='blue', alpha=0.5)
plt.title('客户使用次数分布')
plt.xlabel('使用次数')
plt.ylabel('频率')
plt.show()

对于更复杂的数据集,可能需要对图表进行调整,以确保信息的清晰展示。例如,如果我们想只统计某一范围内的数据,可以使用 plt.xlim()plt.ylim() 来限制图表的范围。

plt.hist(h, num_bins, facecolor='blue', alpha=0.5)
plt.xlim(1, 100) # 只统计 1~100 的数据
plt.title('客户使用次数分布')
plt.xlabel('使用次数')
plt.ylabel('频率')
plt.show()

通过以上代码示例,我们可以看到如何在 Python 中利用 matplotlib 库来绘制直方图,并对数据进行分析和展示。如果需要更详细的数据分析,可以结合 NumPy 库来处理数据。例如,可以使用 rNumpy.sum(axis=1) 来计算每个客户的总使用次数。

import numpy as rNumpy
# 每个客户一共用的代数
h = rNumpy.sum(axis=1)
num_bins = 300
# 绘制直方图
plt.hist(h, num_bins, facecolor='blue', alpha=0.5)
plt.show()

通过上述方法,我们可以根据具体需求对直方图进行定制,从而更直观地展示数据分布。

转载地址:http://bwdnz.baihongyu.com/

你可能感兴趣的文章
MYSQL 查看最大连接数和修改最大连接数
查看>>
MySQL 查看有哪些表
查看>>
mysql 查看锁_阿里/美团/字节面试官必问的Mysql锁机制,你真的明白吗
查看>>
MySql 查询以逗号分隔的字符串的方法(正则)
查看>>
MySQL 查询优化:提速查询效率的13大秘籍(避免使用SELECT 、分页查询的优化、合理使用连接、子查询的优化)(上)
查看>>
mysql 查询数据库所有表的字段信息
查看>>
【Java基础】什么是面向对象?
查看>>
mysql 查询,正数降序排序,负数升序排序
查看>>
MySQL 树形结构 根据指定节点 获取其下属的所有子节点(包含路径上的枝干节点和叶子节点)...
查看>>
mysql 死锁 Deadlock found when trying to get lock; try restarting transaction
查看>>
mysql 死锁(先delete 后insert)日志分析
查看>>
MySQL 死锁了,怎么办?
查看>>
MySQL 深度分页性能急剧下降,该如何优化?
查看>>
MySQL 深度分页性能急剧下降,该如何优化?
查看>>
MySQL 添加列,修改列,删除列
查看>>
mysql 添加索引
查看>>
MySQL 添加索引,删除索引及其用法
查看>>
mysql 状态检查,备份,修复
查看>>
MySQL 用 limit 为什么会影响性能?
查看>>
MySQL 用 limit 为什么会影响性能?有什么优化方案?
查看>>